Data, information, knowledge and wisdom are closely related concepts, but each has its own role in relation to the other, and each term has its own meaning. According to a common view, data are collected and analyzed; data only becomes information suitable for making decisions once it has been analyzed in some fashion.[8] One can say that the extent to which a set of data is informative to someone depends on the extent to which it is unexpected by that person. The amount of information contained in a data stream may be characterized by its Shannon entropy. Knowledge is the understanding based on extensive experience dealing with information on a subject. For example, the height of Mount Everest is generally considered data. The height can be measured precisely with an altimeter and entered into a database. This data may be included in a book along with other data on Mount Everest to describe the mountain in a manner useful for those who wish to make a decision about the best method to climb it. An understanding based on experience climbing mountains that could advise persons on the way to reach Mount Everest's peak may be seen as "knowledge". The practical climbing of Mount Everest's peak based on this knowledge may be seen as "wisdom". In other words, wisdom refers to the practical application of a person's knowledge in those circumstances where good may result. Thus wisdom complements and completes the series "data", "information" and "knowledge" of increasingly abstract concepts. Data are often assumed to be the least abstract concept, information the next least, and knowledge the most abstract.[9] In this view, data becomes information by interpretation; e.g., the height of Mount Everest is generally considered "data", a book on Mount Everest geological characteristics may be considered "information", and a climber's guidebook containing practical information on the best way to reach Mount Everest's peak may be considered "knowledge". "Information" bears a diversity of meanings that ranges from everyday usage to technical use. This view, however, has also been argued to reverse the way in which data emerges from information, and information from knowledge.[10] Generally speaking, the concept of information is closely related to notions of constraint, communication, control, data, form, instruction, knowledge, meaning, mental stimulus, pattern, perception, and representation. Beynon-Davies uses the concept of a sign to differentiate between data and information; data are a series of symbols, while information occurs when the symbols are used to refer to something.[11][12] Before the development of computing devices and machines, people had to manually collect data and impose patterns on it. Since the development of computing devices and machines, these devices can also collect data. In the 2010s, computers are widely used in many fields to collect data and sort or process it, in disciplines ranging from marketing, analysis of social services usage by citizens to scientific research. These patterns in data are seen as information which can be used to enhance knowledge. These patterns may be interpreted as "truth" (though "truth" can be a subjective concept), and may be authorized as aesthetic and ethical criteria in some disciplines or cultures. Events that leave behind perceivable physical or virtual remains can be traced back through data. Marks are no longer considered data once the link between the mark and observation is broken.[13] Mechanical computing devices are classified according to the means by which they represent data. An analog computer represents a datum as a voltage, distance, position, or other physical quantity. A digital computer represents a piece of data as a sequence of symbols drawn from a fixed alphabet. The most common digital computers use a binary alphabet, that is, an alphabet of two characters, typically denoted "0" and "1". More familiar representations, such as numbers or letters, are then constructed from the binary alphabet. Some special forms of data are distinguished. A computer program is a collection of data, which can be interpreted as instructions. Most computer languages make a distinction between programs and the other data on which programs operate, but in some languages, notably Lisp and similar languages, programs are essentially indistinguishable from other data. It is also useful to distinguish metadata, that is, a description of other data. A similar yet earlier term for metadata is "ancillary data." The prototypical example of metadata is the library catalog, which is a description of the contents of books.